Модулятор электрооптической интенсивности – серия HC-BN

Презентация продукции

Электрооптический модулятор интенсивности серии НС-ВN использует электрооптический эффект кристалла ниобата лития для модуляции интенсивности оптического сигнала с помощью интерференционной структуры Маха Зендера. Он обладает характеристиками низкой потери вставки, высокой полосы пропускания модуляции, высокого коэффициента вымирания, низкого напряжения полуволны и высокой поврежденной оптической мощности. Он в основном используется для преобразования электрооптического сигнала и генерации оптической боковой полосы в высокоскоростной оптической системе связи. Генерация оптических импульсов с высоким коэффициентом вымирания и микроволновая волоконная связь в квантовой связи.

Особенности продукции

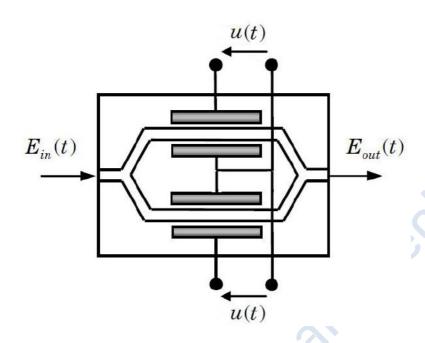
Множественная рабочая длина волны Низкое полуволновое напряжение Высокая пропускная способность Низкая потеря вставки

Область применения

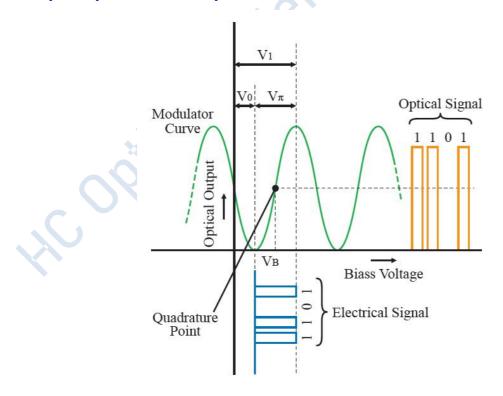
Квантовая связь

Микроволновая волоконно-оптическая связь

Высокоскоростная волоконно-оптическая система связи

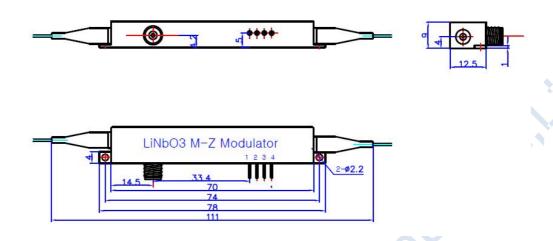

E-mail: lina@glhcoptical.com. Web: www.glhcoptical.com

Технические параметры


Параметры	Символ	BN-08	BN-10	BN-15-10	BN-15-20
Рабочая длина волны	I	830±40 1064±60 1550±100nm			
Потеря вставки	IL	<5 dB	<4 dB	<4 dB	<4 dB
Потеря оптического эха	ORL	-40 dB	-45 dB	-45dB	-45dB
Рабочая полоса пропускания (-3дБ)	S ₂₁	10GHz	10GHz-	10GHz	20GHz
Время подъема от 10% до 90%	tr	35ps	35ps	35ps	18ps
Напряжение полуволны @ 50КГц, РФ	Vπ	5V	4.5V	4V	4V
Напряжение полуволны @ Bias	Vπ	6V	6V	5V	5V
Коэффициент вымирания	ER	28dB	30dB	30dB	30dB
Входное сопротивление	Z _{RF}	50W@RF, 1MW@Bias			
Электрический интерфейс		SMA(f)]			
Потеря электрического эха	S11	<-10dB			
Входное оптическое волокно	(PM Panda медленное выравнивание оси			
Выходное волокно		Одномодовое волокно или волокно РМ			
Оптоволоконный интерфейс		FC/APC или указание клиента			
Рабочая температура	Тор	-10~60°C			
Температура хранения	Tst	-40~80°C			
Входная мощность электрического сигнала	Pi	<28dBm			
Максимальная входная оптическая мощность	Ро	20mW	100mW	100mW	100mW

E-mail: lina@glhcoptical.com. Web: www.glhcoptical.com Page.2

Принципиальная блок-схема



🛚 Характеристическая кривая

E-mail: <u>lina@glhcoptical.com</u>. Web: www.glhcoptical.com

Механические размеры (в mm)

PIN# 1. Bias 2.GND 3.PD Cathode 4. PD Anode

■ Информация о заказе HC-BN-WL-BW-PP

WL - рабочая длина волны: 15-1550 нм, 10-1064 нм

BW - рабочая полоса пропускания: 10G-10GHz 20-20GHz

РР - оптическое волокно ввода-вывода: PP-PM/PM PS-PM/SM

E-mail: <u>lina@glhcoptical.com</u>. Web: www.glhcoptical.com